吴开亮
职称:副教授
职位:副教授
邮箱:wukl@sustech.edu.cn
研究方向:微分方程数值解、计算流体力学与数值相对论、机器学习与数据科学、计算物理、高维逼近论与不确定性量化
个人简介
吴开亮,男,籍贯安徽省安庆市,理学博士,南方科技大学数学系副教授、博士生导师。2011年获华中科技大学数学学士学位;2016年获北京大学计算数学博士学位;2016-2020年先后在美国犹他大学和美国俄亥俄州立大学从事博士后研究工作;2021年1月加入南方科技大学、任副教授。研究方向包括计算流体力学与数值相对论、机器学习与数据驱动建模、微分方程数值解、高维逼近与不确定性量化等。研究成果发表在SINUM,SISC,Numer. Math.,M3AS,J. Comput. Phys.,JSC,ApJS,Phys. Rev. D等期刊上。曾获中国数学会计算数学分会 优秀青年论文奖一等奖(2015)和中国数学会 钟家庆数学奖(2019)。
研究领域
微分方程数值解
计算流体力学与数值相对论
机器学习与数据科学
计算物理
高维逼近论与不确定性量化
代表论文
36. K. Wu*, H. Jiang, and C.-W. Shu, Provably positive central DG schemes via geometric quasilinearization for ideal MHD equations
SIAM Journal on Numerical Analysis, in press , 2022.
35. Z. Sun, Y. Wei, and K. Wu*, On energy laws and stability of Runge–Kutta methods for linear seminegative problems
SIAM Journal on Numerical Analysis, 60(5): 2448–2481, 2022.
34. K. Wu and C.-W. Shu*, Geometric quasilinearization framework for analysis and design of bound-preserving schemes
SIAM Review, 2022. arXiv:2111.04722. 8 Nov 2021.
33. K. Wu, Minimum principle on specific entropy and high-order accurate invariant region preserving numerical methods for relativistic hydrodynamics
SIAM Journal on Scientific Computing, 43(6): B1164–B1197, 2021.
32. Z. Chen, V. Churchill, K. Wu, and D. Xiu, Deep neural network modeling of unknown partial differential equations in nodal space
Journal of Computational Physics, 110782, 2022.
31. H. Jiang, H. Tang, and K. Wu*, Positivity-preserving well-balanced central discontinuous Galerkin schemes for the Euler equations under gravitational fields
Journal of Computational Physics, 463: 111297, 2022.
30. Y. Chen and K. Wu*, A physical-constraint-preserving finite volume method for special relativistic hydrodynamics on unstructured meshes
Journal of Computational Physics, 466: 111398, 2022.
29. K. Wu* and C.-W. Shu, Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations
Numerische Mathematik, 148: 699–741, 2021.
28. K. Wu and Y. Xing, Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: Positivity and well-balancedness
SIAM Journal on Scientific Computing, A472–A510, 2021.
27. K. Wu, T. Qin, and D. Xiu, Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data
SIAM Journal on Scientific Computing, 42(6): A3704–A3729, 2020.
26. K. Wu and C.-W. Shu, Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations
SIAM Journal on Scientific Computing, 42(4): A2230–A2261, 2020.
25. K. Wu and D. Xiu, Data-driven deep learning of partial differential equations in modal space
Journal of Computational Physics, 408: 109307, 2020.
24. Z. Chen, K. Wu, and D. Xiu, Methods to recover unknown processes in partial differential equations using data
Journal of Scientific Computing, 85:23, 2020.
23. K. Wu, D. Xiu, and X. Zhong, A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs
Communications in Computational Physics, 30(2): 423–447, 2021.
22. J. Hou, T. Qin, K. Wu and D. Xiu, A non-intrusive correction algorithm for classification problems with corrupted data
Commun. Appl. Math. Comput., 3: 337–356, 2021.
21. K. Wu and C.-W. Shu, Provably positive high-order schemes for ideal magnetohydrodynamics: Analysis on general meshes
Numerische Mathematik, 142(4): 995–1047, 2019.
20. T. Qin, K. Wu, and D. Xiu, Data driven governing equations approximation using deep neural networks
Journal of Computational Physics, 395: 620–635, 2019.
19. K. Wu and D. Xiu, Numerical aspects for approximating governing equations using data
Journal of Computational Physics, 384: 200–221, 2019.
18. K. Wu and D. Xiu, Sequential approximation of functions in Sobolev spaces using random samples
Commun. Appl. Math. Comput., 1: 449–466, 2019.
17. K. Wu and C.-W. Shu, A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics
SIAM Journal on Scientific Computing, 40(5):B1302–B1329, 2018.
16. Y. Shin, K. Wu, and D. Xiu, Sequential function approximation with noisy data
Journal of Computational Physics, 371:363–381, 2018.
15. K. Wu, Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics
SIAM Journal on Numerical Analysis, 56(4):2124–2147, 2018.
14. K. Wu and D. Xiu, Sequential function approximation on arbitrarily distributed point sets
Journal of Computational Physics, 354:370–386, 2018.
13. K. Wu and H. Tang, On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state
Z. Angew. Math. Phys., 69:84(24pages), 2018.
12. K. Wu, Y. Shin, and D. Xiu, A randomized tensor quadrature method for high dimensional polynomial approximation
SIAM Journal on Scientific Computing, 39(5):A1811–A1833, 2017.
11. K. Wu, Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics
Physical Review D, 95, 103001, 2017.
10. K. Wu, H. Tang, and D. Xiu, A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty
Journal of Computational Physics, 345:224–244, 2017.
9. K. Wu and H. Tang, Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations
Math. Models Methods Appl. Sci. (M3AS), 27(10):1871–1928, 2017.
8. Y. Kuang, K. Wu, and H. Tang, Runge-Kutta discontinuous local evolution Galerkin methods for the shallow water equations on the cubed-sphere grid
Numer. Math. Theor. Meth. Appl., 10(2):373–419, 2017.
7. K. Wu and H. Tang, Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state
Astrophys. J. Suppl. Ser. (ApJS), 228(1):3(23pages), 2017. (2015 Impact Factor of ApJS: 11.257)
6. K. Wu and H. Tang, A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics
SIAM Journal on Scientific Computing, 38(3):B458–B489, 2016.
5. K. Wu and H. Tang, A Newton multigrid method for steady-state shallow water equations with topography and dry areas
Applied Mathematics and Mechanics, 37(11):1441–1466, 2016.
4. K. Wu and H. Tang, High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynam
3. K. Wu, Z. Yang, and H. Tang, A third-order accurate direct Eulerian GRP scheme for one-dimensional relativistic hydrodynamics
East Asian J. Appl. Math., 4(2):95–131, 2014.
2. K. Wu and H. Tang, Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics
Journal of Computational Physics, 256:277–307, 2014.
1. K. Wu, Z. Yang, and H. Tang, A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics
Journal of Computational Physics, 264:177–208, 2014.