陈瑜
职位:研究副教授
邮箱:cheny36@sustech.edu.cn
研究方向:格子玻尔兹曼方法及其应用 现代高性能并行计算、异构计算 微流体和多孔介质内复杂流动模拟 颗粒输运模拟 工业软件开发
个人简介
陈瑜研究副教授于2006年和2012年毕业于北京大学工学院,分别获得理论与应用力学专业的学士学位和流体力学专业的博士学位。2012年至2015在清华大学工程热物理所,2015年至2018年在伊利诺伊大学香槟分校土木环境系,2018年至2021年在洛斯阿拉莫斯国家实验室计算地球科学组做博士后研究工作。2021年6月至今在南方科技大学力学与航空航天工程系任研究副教授。近年主要研究成果包括:
(1) 深入研究了多孔介质内流体驱替过程中的惯性效应,通过大规模高性能计算模拟并与实验验证对比,证明了二氧化碳驱水过程中的惯性作用不可忽略并发现了惯性作用的阈值现象。相关成果对二氧化碳地质埋存相关研究具有重大借鉴意义。
(2) 主导开发了一个跨平台、可扩展和高性能的基于格子玻尔兹曼方法(LBM)的两相流直接数值模拟开源程序,MF-LBM。主要应用于多孔介质和微流体流动模拟,可运行于CPU, GPU, MIC, ARM等各种处理器或协处理器,曾实现了26亿网格的GPU加速的真实岩芯中二氧化碳和水的驱替模拟。
教育背景
2006.7 北京大学,工学院,理论与应用力学学士
2012.7 北京大学,工学院,流体力学博士
工作经历
2012.9 – 2015.1 清华大学,工程热物理所,博士后
2015.8 – 2018.1 伊利诺伊大学香冰分校,土木环境系, 博士后
2018.1 – 2021.5 洛斯阿拉莫斯国家实验室,计算地球组,博士后
2021.6 – 至今,南方科技大学,力学与航空航天工程系,研究副教授
开源项目
1. 主导开发了MF-LBM(https://github.com/lanl/MF-LBM)开源程序
2. 参与开发了R&D100获奖开源软件dfnWorks(https://dfnworks.lanl.gov)
研究领域
格子玻尔兹曼方法及其应用
现代高性能并行计算、异构计算
微流体和多孔介质内复杂流动模拟
颗粒输运模拟
工业软件开发
代表论文
[1] K. Wang, Y. Chen, M. Mehana, et al., “A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media,” Journal of Computational Physics, vol. 443, p. 110 526, 2021, issn: 0021-9991. doi: https://doi.org/10.1016/j. jcp.2021.110526.
[2] J. Jiménez-Martínez, J. D. Hyman, Y. Chen, et al., “Homogenization of Dissolution and Enhanced Precipitation Induced by Bubbles in Multiphase Flow Systems,” Geophysical Research Letters, vol. 47, no. 7, e2020GL087163, 2020, issn: 19448007. doi: 10.1029/2020GL087163.
[3] N. Lubbers, A. Agarwal, Y. Chen, et al., “Modeling and scale-bridging using machine learning: Nanoconfinement effects in porous media,” Scientific Reports, vol. 10, no. 1, pp. 1–13, 2020.
[4] D. P. Ryan, Y. Chen, P. Nguyen, et al., “3d particle transport in multichannel microfluidic networks with rough surfaces,” Scientific reports, vol. 10, no. 1, pp. 1–10, 2020.
[5] Chen, Yu, A. J. Valocchi, Q. Kang, and H. S. Viswanathan, “Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models,” Water Resources Research, vol. 55, no. 12, pp. 11 144–11 165, 2019, issn: 19447973. doi: 10.1029/2019WR025746.
[6] B. Zhao, C. W. MacMinn, B. K. Primkulov, Y. Chen, et al., “Comprehensive comparison of pore-scale models for multiphase flow in porous media,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 28, pp. 13 799–13 806, 2019, issn: 10916490. doi: 10.1073/pnas.1901619116.
[7] Chen, Yu, Y. Li, A. J. Valocchi, and K. T. Christensen, “Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions,” Journal of Contaminant Hydrology, vol. 212, pp. 14–27, 2018, issn: 18736009. doi: 10.1016/j.jconhyd.2017.09.005.
[8] J. Tudek, D. Crandall, S. Fuchs, et al., “In situ contact angle measurements of liquid CO2, brine, and Mount Simon sandstone core using micro X-ray CT imaging, sessile drop, and Lattice Boltzmann modeling,” Journal of Petroleum Science and Engineering, vol. 155, pp. 3–10, 2017, issn: 09204105. doi: 10.1016/j.petrol.2017.01.047.
[9] Z. Chen, C. Xie, Y. Chen, and M. Wang, “Bonding strength effects in hydro-mechanical coupling transport in granular porous media by pore-scale modeling,” Computation, vol. 4, no. 1, p. 15, 2016, issn: 20793197. doi: 10.3390/computation4010015.
[10] Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab on a Chip, vol. 16, no. 3, pp. 532–542, 2016, issn: 14730189. doi: 10.1039/c5lc01435b.
[11] Chen, Yu, Q. Kang, Q. Cai, M. Wang, and D. Zhang, “Lattice Boltzmann Simulation of Particle Motion in Binary Immiscible Fluids,” Communications in Computational Physics, vol. 18, no. 3, pp. 757–786, 2015, issn: 19917120. doi: 10.4208/cicp.101114.150415a.
[12] Z. Xia, Y. Shi, Y. Chen, M. Wang, and S. Chen, “Comparisons of different implementations of turbulence modelling in lattice Boltzmann method,” Journal of Turbulence, vol. 16, no. 1, pp. 67–80, 2015, issn: 14685248. doi: 10.1080/14685248.2014.954709.