单肖文
职称:讲席教授
邮箱:shanxw@sustech.edu.cn
研究方向:格子波尔兹曼方程、流体力学、航空航天
个人简介
单肖文教授现任南方科技大学讲席教授;北京大学力学系理学学士、硕士,美国达特茅斯学院物理学博士;1991年至 1996年在美国达特茅斯学院物理系和洛斯阿拉莫斯国家实验室非线性研究中心从事博士后研究;1996至1998年任美国洛斯阿拉莫斯国家实验室理论部研 究员;1998至2005年任微软公司软件设计师;2005年至2012年任美国Exa公司负责先进物理算法开发的高级主管;2012年回国,任中国商用飞机公司北京研究中心气动与声学研究部负责人。其间还担任美国Exxon研究和工程公司顾问,美国空军实验室、英国伦敦大学国 王学院访问学者、美国波士顿大学、中国上海大学、英国Strathclyde大学、中国石油大学,西北工业大学的兼职或访问教授。
单肖文教授对格子玻尔兹曼方法的发展和应用作出了重要贡献。以他姓氏命名的 Shan-Chen 模型被广泛应用于从燃料电池到宇宙暗能量的模拟。其在该领域的另一重要贡献是在格子玻尔兹曼方法同连续介质力学之间的理论联系方面的发现,使得该方法能够 处理可压缩流动和非纳维斯托克斯流动。因其杰出工作,单教授于2009年被选为美国物理学会会士(Fellow, American Physical Society)。此外,单教授在等离子体物理、磁流体动力学、湍流的计算机模拟等领域都取得了杰出成果。2012年回国后,领导了中国商飞北研中心气动 与声学研究部的建设发展,并负责承担了工信部《远程宽体客机总体构型及气动布局技术研究》等国家重大科研任务。
研究领域
格子波尔兹曼方程、流体力学、航空航天
代表论文
[57] M. Xia, S. Wang, H. Zhou, X. Shan, H. Chen, Q. Li, and Q. Zhang, “Modelling viscoacoustic wave propagation with the lattice Boltzmann method”, Sci. Rep., vol. 7, no. 1, p. 10169, Dec. 2017.
[56] L. Guo, L. Xiao, X. Shan, and X. Zhang, “Modeling adsorption with lattice Boltzmann equation”, Sci. Rep., vol. 6, no. 1, p. 27134, Jul. 2016.
[55] X. Shan, “The mathematical structure of the lattices of the lattice Boltzmann method”, J. Comput. Sci., vol. 17, pp. 475–481, Nov. 2016.
[54] Y. LIANG and X. Shan, “Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet”, Acta Aeronaut. Astronaut. Sin., vol. 37, no. 3, p. 790, 2016.
[53] J. Wang, X. Shan, B. Wu, and O. A. Bauchau, “Time Domain Approaches to the Stability Analysis of Flexible Dynamical Systems”, J. Comput. Nonlinear Dyn., vol. 11, no. 4, p. 041003, Nov. 2015.
[52] G. WANG, J. ZENG, J.-D. LEE, X. DU, and X. Shan, “Preliminary Design of a Truss-Braced Natural-Laminar-Flow Composite Wing via Aeroelastic Tailoring”, J. Aeroelasticity Struct. Dyn., vol. 3, no. 3, pp. 1–17, 2015.
[51] X. Zhang, L. Xiao, X. Shan, and L. Guo, “Lattice Boltzmann simulation of shale gas transport in organic nano-pores”, Sci. Rep., vol. 4, p. 4843, 2014.
[50] G. Wang, Y. Liu, G. Wang, and X. Shan, “Transitional flow simulation based on γ-Reθt transition model”, Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin., vol. 35, no. 1, pp. 70–79, 2014.
[49] J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. a. Radtke, and X. Shan, “Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows”, J. Fluid Mech., vol. 718, pp. 347–370, Feb. 2013.
[48] M. Sbragaglia and X. Shan, “Consistent pseudopotential interactions in lattice Boltzmann models”, Phys. Rev. E, vol. 84, no. 3, p. 036703, Sep. 2011.
[47] X. Shan, “Lattice Boltzmann in micro- and nano-flow simulations”, IMA J. Appl. Math., vol. 76, no. 5, pp. 650–660, Apr. 2011.
[46] Y. Li and X. Shan, “Lattice Boltzmann method for adiabatic acoustics”, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 369, no. 1944, pp. 2371–2380, Jun. 2011.
[45] G. De Prisco and X. Shan, “Mass Transport/Diffusion and Surface Reaction Process with Lattice Boltzmann”, Commun. Comput. Phys., vol. 9, no. 5, pp. 1362–1374, 2011.
[44] J. Meng, Y. Zhang, and X. Shan, “Multiscale lattice Boltzmann approach to modeling gas flows”, Phys. Rev. E, vol. 83, no. 4, p. 046701, Apr. 2011.
[43] X. Shan, “General solution of lattices for Cartesian lattice Bhatanagar-Gross-Krook models”, Phys. Rev. E, vol. 81, no. 3, p. 036702, Mar. 2010.
[42] X. Shan, “Multicomponent lattice Boltzmann model from continuum kinetic theory”, Phys. Rev. E, vol. 81, no. 4, p. 045701, Apr. 2010.
[41] Y. Li, H. Fan, X. Nie, R. Zhang, X. Shan, H. Chen, X. Chi, and T. I.-P. Shih, “Application of a higher order Lattice Boltzmann/ hybrid method for simulation of compressible viscous flows with curved boundary”, in 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009.
[40] M. Sbragaglia, H. Chen, X. Shan, and S. Succi, “Continuum free-energy formulation for a class of lattice Boltzmann multiphase models”, EPL (Europhysics Lett., vol. 86, no. 2, p. 24005, Apr. 2009.
[39] M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, and S. Succi, “Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria”, J. Fluid Mech., vol. 628, p. 299, Jun. 2009.
[38] X. Nie, X. Shan, and H. Chen, “Lattice-Boltzmann / Finite-Difference Hybrid Simulation of Transonic Flow”, in 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009, no. January, pp. 2009–2009.
[37] C. E. Colosqui, H. Chen, X. Shan, I. Staroselsky, and V. Yakhot, “Propagating high-frequency shear waves in simple fluids”, Phys. Fluids, vol. 21, no. 1, p. 013105, 2009.
[36] H. Chen and X. Shan, “Fundamental conditions for N-th-order accurate lattice Boltzmann models”, Phys. D Nonlinear Phenom., vol. 237, no. 14–17, pp. 2003–2008, Aug. 2008.
[35] X. Nie, X. Shan, and H. Chen, “Galilean invariance of lattice Boltzmann models”, Europhys. Lett., vol. 81, no. February, p. 34005, 2008.
[34] S. Chibbaro, H. Chen, X. Shan, and S. Succi, “Lattice Boltzmann models for nonideal fluids with arrested phase-separation”, Phys. Rev. E, vol. 77, no. 3, p. 036705, Mar. 2008.
[33] G. Falcucci, S. Chibbaro, S. Succi, X. Shan, and H. Chen, “Lattice Boltzmann spray-like fluids”, Europhys. Lett., vol. 82, p. 24005, Apr. 2008.
[32] X. Shan, “Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models”, Phys. Rev. E, vol. 77, no. 6, p. 066702, Jun. 2008.
[31] H. B. Li, H. H. Yi, X. Shan, and H. P. Fang, “Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model”, Europhys. Lett., vol. 81, no. 5, p. 54002, Mar. 2008.
[30] X. Nie, X. Shan, and H. Chen, “Thermal lattice Boltzmann model for gases with internal degrees of freedom”, Phys. Rev. E, vol. 77, p. 035701, 2008.
[29] X. Shan and H. Chen, “A General Multiple-Relaxation-Time Boltzmann Collision Model”, Int. J. Mod. Phys. C, vol. 18, no. 04, p. 635, 2007.
[28] Z. Yu, X. Shan, and L.-S. Fan, “An improved multi-component lattice Boltzmann method for simulation of gas-liquid flows with high density ratio”, in AIChE Annual Meeting, Conference Proceedings, 2007.
[27] Y. Chen, X. Shan, and H. Chen, “New direction of computational fluid dynamics and its applications in industry”, Sci. China Ser. E Technol. Sci., vol. 50, no. 5, pp. 521–533, Oct. 2007.
[26] X. Shan, “Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models”, Phys. Rev. E, vol. 73, no. 4, p. 047701, Apr. 2006.
[25] R. Zhang, X. Shan, and H. Chen, “Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation”, Phys. Rev. E, vol. 74, no. 4, p. 46703, 2006.
[24] X. Shan, X.-F. Yuan, and H. Chen, “Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation”, J. Fluid Mech., vol. 550, p. 413, Feb. 2006.
[23] K. SANKARANARAYANAN, X. Shan, I. G. Kevrekidis, and S. Sundaresan, “Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method”, J. Fluid Mech., vol. 452, pp. 61–96, Feb. 2002.
[22] K. Sankaranarayanan, X. Shan, I. G. Kevrekidis, and S. Sundaresan, “Bubble flow simulations with the lattice Boltzmann method”, Chem. Eng. Sci., vol. 54, pp. 4817–4823, 1999.
[21] X. He, X. Shan, and G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases”, Phys. Rev. E, vol. 57, no. 1, pp. R13–R16, Jan. 1998.
[20] X. Shan and X. He, “Discretization of the Velocity Space in the Solution of the Boltzmann Equation”, Phys. Rev. Lett., vol. 80, no. 1, pp. 65–68, Jan. 1998.
[19] N. S. Martys, X. Shan, and H. Chen, “Evaluation of the external force term in the discrete Boltzmann equation”, Phys. Rev. E, vol. 58, no. 5, pp. 6855–6857, Nov. 1998.
[18] S. Hou, X. Shan, Q. Zou, G. D. Doolen, and W. E. Soll, “Evaluation of Two Lattice Boltzmann Models for Multiphase Flows”, J. Comput. Phys., vol. 138, no. 2, pp. 695–713, Dec. 1997.
[17] X. Shan, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, vol. 55, no. 3, pp. 2780–2788, Mar. 1997.
[16] X. Shan and G. D. Doolen, “Diffusion in a multicomponent lattice Boltzmann equation model”, Phys. Rev. E, vol. 54, no. 4, pp. 3614–3620, Oct. 1996.
[15] F. Venneri, C. Beard, C. Bowman, J. Buksa, R. Camassa, J. W. Davidson, G. D. Doolen, J. Durkee, R. Ecke, J. Elson, E. Heighway, M. Houts, R. Krakowski, N. Li, J. Park, R. Perry, D. Poston, R. Prael, W. Sailor, and X. Shan, “Development of the Accelerator-Driven Energy Production Concept”, 1996.
[14] D. C. Montgomery and X. Shan, “Microscopic origins and macroscopic uses of plasma rotation”, J. Plasma Phys., vol. 54, no. pt 1, pp. 1–10, 1995.
[13] X. Shan and G. D. Doolen, “Multicomponent lattice-Boltzmann model with interparticle interaction”, J. Stat. Phys., vol. 81, no. 1–2, pp. 379–393, Oct. 1995.
[12] X. Shan and D. C. Montgomery, “Magnetohydrodynamic Stabilization through Rotation”, Phys. Rev. Lett., vol. 73, no. 12, pp. 1624–1627, Sep. 1994.
[11] X. Shan and H. Chen, “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation”, Phys. Rev. E, vol. 49, no. 4, pp. 2941–2948, Apr. 1994.
[10] X. Shan and D. C. Montgomery, “Global searches of Hartmann-number-dependent stability boundaries”, Plasma Phys. Control. Fusion, vol. 35, no. 8, pp. 1019–1032, Aug. 1993.
[9] X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components”, Phys. Rev. E, vol. 47, no. 3, pp. 1815–1819, Mar. 1993.
[8] X. Shan and D. C. Montgomery, “On the role of the Hartmann number in magnetohydrodynamic activity”, Plasma Phys. Control. Fusion, vol. 35, no. 5, pp. 619–631, 1993.
[7] S. Chen and X. Shan, “High-resolution turbulent simulations using the Connection Machine-2”, Comput. Phys., vol. 6, no. 6, pp. 643–646, 1992.
[6] S. Chen, Z. Wang, X. Shan, and G. D. Doolen, “Lattice Boltzmann computational fluid dynamics in three dimensions”, J. Stat. Phys., vol. 68, no. 3, pp. 379–400, 1992.
[5] D. C. Montgomery, X. Shan, and W. H. Matthaeus, “Navier–Stokes relaxation to sinh–Poisson states at finite Reynolds numbers”, Phys. Fluids A Fluid Dyn., vol. 5, no. 9, p. 2207, 1993.
[4] D. C. Montgomery, H. Chen, and X. Shan, “Effects of uniform rotation on helically-deformed, resistive, magnetohydrodynamic equilibria”, Plasma Phys. Control. Fusion, vol. 33, no. 14, pp. 1871–1875, Nov. 1991.
[3] X. Shan, D. C. Montgomery, and H. Chen, “Nonlinear magnetohydrodynamics by Galerkin-method computation”, Phys. Rev. A, vol. 44, no. 10, pp. 6800–6818, Nov. 1991.
[2] H. Chen, X. Shan, and D. C. Montgomery, “GalerLattice approximations for dissipative magnetohydrodynamics”, Phys. Rev. A, vol. 42, no. 10, pp. 6158–6165, Nov. 1990.
[1] X. Shi and X. Shan, “Relation between the quasi-cylindrical approximation and the critical classification for swirling flow”, Acta Mech. Sin., vol. 3, no. 4, pp. 304–314, Nov. 1987.